
1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

1.10

1.11

1.12

1.13

1.14

1.15

1.16

1.17

1.18

SUMMARY
How	To	...

Install	Git	Locally

Setup	Dev	environment	with	Visual	Studio	Code

Create	new	Github	repo	from	existing	local	file	folder

Create	gh-pages	branch	for	Github	hosting

Use	the	Visual	Studio	Code	Terminal

Kill	a	process	based	on	port	number

Validate	HTML	and	CSS

Setup	SSH

Setup	Linux	Shell	on	Windows	10	(Ubuntu)

How	to	Add	an	Admin	User	to	Wordpress	using	mySQL

Wordpress:	Additional	Permissions

Codenvy:	Get	started

Lets	Encrypt:	HTTPS	on	Apache

Using	Bootstrap	with	Vue.js

Git	Command	Line

Create	a	Droplet	on	Digital	Ocean

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

1

How	to	...
This	collection	of	FAQ's	serve	to	help	a	student	accomplish	tasks	needed	to	develop	web	sites.

How	To	...

2

This	is	the	answer	to	"How	to	install	Git	locally?"

Before	you	start	this	process,	create	an	account	on	Github	at	https://github.com/.

Download	and	Install	Git
https://git-scm.com/downloads

This	will	install	a	Folder	with	a	number	of	file	and	programs.

Open	a	bash	window	(terminal		on	Mac	or	'	git	bash	'	on	Windows)	and	type	in

	git	--version	

This	should	return	a	confirmation	that	git	is	installed	with	a	version	number.

Connect	to	your	local	workstation	to	Github	with	SSH
Without	SSH	connection	setup	you	will	have	to	enter	your	username	and	password	every	time	you	connect	to	Github,
which	you	will	usually	have	to	do	during	a		git	push		command.	By	sharing	your	workstation	public	key	with	Github,
you	will	not	have	to	provided	username	and	password	to	connect.

Open	a	bash	session	(terminal		on	Mac	or	'	git	bash	'	on	Windows).	All	commands	below	should	be	entered	into	the
bash	session.

Check	to	see	if	you	already	have	a	private	key/public	key	setup	by	listing	any	files	in	the	hidden	direction	.ssh.

	ls	-al	~/.ssh	

If	you	don't	see	any	of	the	following	files	you	will	need	to	create	the	key	files

id_rsa.pub
id_ecdsa.pub
id_ed25519.pub

Create	public	key/private	key	files	if	they	don't	already
exist
You	only	need	to	do	this	step	if	you	don't	already	have	public/private	key	files.

You	ll	first	create	the	key	files	using	the	email	you	provided	to	Github.	This	will	label	the	keys	with	that	email.

	ssh-keygen	-t	rsa	-b	4096	-C	"your_email@example.com"	

	Generating	public/private	rsa	key	pair.	

Next	you'll	be	prompted	to	enter	a	file	name	for	your	keys	and	you	can	just	press	enter	to	accept	the	default.

	Enter	a	file	in	which	to	save	the	key	(/c/Users/you/.ssh/id_rsa):[Press	enter]	

Finally,	you'll	be	prompted	to	enter	a	passphrase.	This	is	a	security	feature	and	you	will	have	to	enter	this	passphrase
when	you	connect	to	Github,	so	be	sure	to	remember	it.	It	can	be	as	simple	as	a	four	digit	pin	number.

	Enter	passphrase	(empty	for	no	passphrase):	[Type	a	passphrase]	

	Enter	same	passphrase	again:	[Type	passphrase	again]	

Install	Git	Locally

3

https://github.com/
https://github.com/
https://git-scm.com/downloads

Start	SSH	Agent	and	Add	Keys
The	SSH	Agent	is	a	process	that	will	allow	you	to	manage	SSH	Keys.	You'll	start	that	process	and	add	your	keys	with
the	following	command.

	eval	$(ssh-agent	-s)	

You	will	see	a	response	like	this	indicate	that	the	process	is	running.

	Agent	pid	59566	

The	command	below	adds	your	key	to	the	ssh	agent.	If	the	name	of	your	key	is	different	replace		id_rsa		with	the
name	of	your	key.

	ssh-add	~/.ssh/id_rsa	

Add	the	SSH	Key	to	you	Github	Acccount
Now	you	need	to	add	the	public	key	to	your	Github	account.	This	will	allow	Github	to	decrypt	the	data	you	send	it	via
SSH.

We	start	by	using	the		clip		command	to	copy	the	content	of	the	public	key	SSH	file	to	your	local	buffer.

	clip	<	~/.ssh/id_rsa.pub	

If	the		clip		command	is	not	installed	you	can	list	the	file	to	the	console	and	then	copy	the	contents	into	your	buffer
with	ctrl-c/cmd-c.	The		cat		command	will	list	the	file	to	the	console.

	cat	~/.ssh/id_rsa.pub	

You	can	also	open	the	file	with	a	text	editor	and	copy	the	content	into	the	buffer	if	you	have	trouble	with	the		clip	
command.

Next,	go	to	your	Github	account	online	and	click	on	your	photo.	This	will	reveal	a	dropdown	selection	where	you
should	select	Settings.

Install	Git	Locally

4

The	Setings	menu	will	appear	on	the	left	of	the	screen	and	from	there	you	will	click	on	SSH	and	GPG	keys.

After	you	click	on	SSH	and	GPG	keys	you,	you	will	you	click	on	a	button	to	add	a	new	key.

Click	on	the	Green	button	to	add	the	key	you	have	in	you	buffer.	You	should	see	a	form.	Enter	a	Title	that	help	you	to
remember	the	workstation	you	got	the	key	from	and	then	paste	the	key	into	the	key	textarea.	Finally	click	on	the	Add
SSH	key	to	add	it	to	the	list	of	keys	known	to	Github.

Install	Git	Locally

5

Update	User	Name	and	Email	in	Local	Git	Config
The	local	Git	program	maintains	configuration	data	about	you	that	should	correspond	to	your	account	on	github.com.
You'll	want	to	provide	the	email	and	user	name	that	you	used	for	github.com	in	when	you	execute	the	following
commands.

	git	config	--global	user.name	"Mona	Lisa"	

	git	config	--global	user.email	"email@example.com"	

You	can	execute	these	commands	to	verify	that	you	have	set	up	the	config	variables	properly.

	git	config	--global	user.name	

	git	config	--global	user.email	

Making	VS	Code	the	Default	Editor	for	Git

You	can	make	Visual	Studio	Code	the	default	editor	for	git.	If	you	ever	forget	to	close	the	quotes	when	adding	the
message	during	commit	(git	commit	-m"update)	you	find	that	git	open	up	the	default	editor.

Before	running	the	git	config	to	set	VS	Code	as	the	default	editor,	check	that	the	application	is	in	your	computer's	path
so	that	it	can	be	found.	You	can	check	this	by	going	to	the	command	line	and	running.

	code	--help	

If	a	list	of	help	topic	is	printed	to	the	screen,	the	VS	Code	is	in	the	path.	If	not	investigate	how	to	get	VS	Code	into	the
Path.	If	in	the	path	execute	the	following	in	the	command	line.

	git	config	--global	core.editor	"code	--wait"	

test	with	this:		git	config	--global	-e	

If	you	set	up,	the	command	above	will	open	the	.gitconfig	file	which	is	where	git	stores	its	config	variable	in	VS	Code.

See	the	answer	to	a	question	about	this	on	Stack	Overflow	for	more	information:	Editor	For	Git]

How	to	Use	Visual	Studio	Code	as	Default	Editor	For	Git

Install	Git	Locally

6

https://stackoverflow.com/questions/30024353/how-to-use-visual-studio-code-as-default-editor-for-git

Adding	VS	Code	to	your	computer	Path

Mac:	Select

Mac:	Shell	Command:	Install	'Code'	command	in	path	from	the	Command	Palette.
Windows:	Make	sure	you	selected	Add	to	PATH	during	the	installation.
Linux:	Make	sure	you	installed	Code	via	our	new	.deb	or	.rpm	packages.

Additional	References

https://help.github.com/articles/connecting-to-github-with-ssh/

Install	Git	Locally

7

https://help.github.com/articles/connecting-to-github-with-ssh/

This	is	the	answer	to	"How	to	set	up	Dev	environment	with	Visual	Studio	Code?".

Install	Visual	Studio	Code
Download	and	install	VS	Code	using	the	link	below.

https://code.visualstudio.com/

Plugins
Plugins	provide	additional	functionality.

Live-Server	plugin
Live-Server	will	serve	up	web	pages	from	your	VS	Code	project	to	your	default	browser.	It	runs	an	HTTP	server	as	a
background	process	on	the	5500	port,	which	is	a	development	port.

To	install:

Click	on	the	Extensions	icon	located	at	the	bottom	of	the	left	nav	bar	in	the	VS	Code	Application.

Search	for	'Live-Server'	and	click	on	the	Green	Install	button.

Setup	Dev	environment	with	Visual	Studio	Code

8

https://code.visualstudio.com/

After	the	Extension	is	loaded,	click	on	the	Blue	Reload	button	to	complete	the	installation.

Now	you	should	see	a	Go	Live	button	in	the	bottom	status	bar.	When	you	click	on	that,	Live-Server	will	start	and
serve	your	index.html	file	by	default.

Setup	Dev	environment	with	Visual	Studio	Code

9

Once	the	server	has	been	started,	the	Go	Live	button	will	change	to	Port:	5500	which	indicates	that	the	server	is
running.	The	Go	Live	and	Port:5500	buttons	operate	as	a	toggle.	When	you	save	changes	in	files	that	are	being
served,	the	server	will	automatically	reserve	the	files.	This	will	ensure	that	your	browser	is	always	running	the	latest
saved	changes.

Beautify	Plugin

Setup	Dev	environment	with	Visual	Studio	Code

10

The	Beautify	Plug	in	will	help	with	code	formatting.	It	will	allow	you	to	right-click	on	a	document	that	you	are	editing
and	see	a	"Format	Document"	option.	Clicking	on	this	will	format	your	page.	As	with	all	VS	Code	plugin	installs,	you
go	navigate	to	the	plugin	section,	search	for	the	plugin	you	want	to	install,	press	the	Install	button	and	then	press	the
Reload	button	to	make	the	plugin	active.

The	picture	below	shows	the	install	button.

The	picture	below	shows	the	Format	Document	option	that	you	see	when	you	right	click	in	a	document.

Setup	Dev	environment	with	Visual	Studio	Code

11

User	Settings
VS	Code	allows	you	to	customize	settings	for	all	projects	(User	Settings)	or	for	a	single	project	(Workspace	settings).
VS	Code	provides	a	GUI	settings	manager	by	default.	To	modify	default	settings	by	upgrading	JSON	configuration
directly	use	the	open	command	(CTRL-Shift-P	on	Windows	or	CMD-Shift-P	on	Mac)	and	type	in	"Open	Settins
(JSON)".

You	will	see	2	files	side	by	side.	On	the	left	are	the	default	settings	and	on	the	right	are	the	User	setting	overrides.

To	change	a	default	setting	find	the	setting	on	the	left	and	then	copy	it	to	the	right	with	your	desired	setting.	For
example,	if	you	don't	want	to	see	the	minimap	on	the	right	hand	side	of	the	application,	you	can	make	the	following
entry	in	the	file	on	the	right.	Notice	that	options	are	key	:	value	pairs	and	that	they	are	commas	separated.

	{	

	"editor.minimap.enabled":false	

	}	

Setup	Dev	environment	with	Visual	Studio	Code

12

If	you	are	using	Windows	and	want	to	use	"Git	Bash"	in	for	the	VS	Code	terminal	add	the	following	to	your	User
Settings:

	"terminal.integrated.shell.windows":	"C:\\Program	Files\\Git\\bin\\bash.exe"	

How	to	Easily	Add	VS	Code	to	the	Mac	PATH
It	is	often	handy	to	be	able	to	open	VS	Code	from	the	command	line.	In	order	to	do	this	the	"code"	command	which	is
the	name	of	the	VS	Code	program	must	be	in	the	machine's	list	of	programs	which	are	stored	in	the	environmental
PATH	variable.	It	will	get	installed	in	the	windows	PATH	during	Windows	install.	For	the	Mac,	you	need	to	do	this:

Open	Visual	Studio	Code	and	press		Command	+	Shift	+	P		then	type	Shell	in	command	palette	now	you	are	able	to
find	this	option	like	Shell	Command	:	Install	code	in	PATH	from	suggested	list	in	command	palette.	Select	that
options.

Setup	Dev	environment	with	Visual	Studio	Code

13

This	is	the	answer	to	"How	to	install	create	new	Github	repo	from	existing	file	folder?"

New	repository	from	existing	local	folder
This	assumes	you	have	installed	Git	locally.

Online:

Go	to	your	github	account	https://github.com/<account	name>

In	the	upper-right	corner	of	any	page,	click	the	"+"	icon	and	choose	to	'New	Repository'

Fill	out	the	new	repository	name	and	give	it	a	description	in	the	New	Repository	form

Make	note	of	the	name	of	the	repo

Local:

On	Mac,	open	terminal	and	on	Windows	open	Git	Bash.

Follow	instructions	below	substituting	your	account	name	and	the	repo	you	created	above	in	the	command.

	cd		to	the	root	of	the	folder	you	want	to	add	to	github

	git	init	

git	remote	add	origin	git@github.com:<account	name>/<exisisting	remote	repo>.git

git	push	-u	origin	master

	git	add	.	

	git	commit	-m"first	commit"	

If	you	added	a	license	or	Readme	while	setting	up	the	new	repository	you	will	need	to	"pull"	before	"pushing"

	git	pull	origin	master	--allow-unrelated-histories	

	git	push	--set-upstream	origin	master	

Create	new	Github	repo	from	existing	local	file	folder

14

https://github.com

This	is	the	answer	to	"How	to	create	gh-pages	branch	for	Github	hosting?"

Create	gh-pages	branch	for	Github	hosting
Github	will	host	the	web	pages	that	you	create	in	your	Repos.	One	way	to	set	up	Github	hosting	is	to	create	a	gh-
pages	branch	in	your	repo.	Any	code	in	that	branch	will	be	hosted	at	an	address	that	follows	this	pattern

	https://<account	name>.github.io/<repo	name>	

For	example	if	my	account	name	is		janedev		and	my	repo	name	is		wats3010-hello-world		,	and	I	have	created	a	gh-
pages	branch	on	my	repo,	I	will	find	the	index.html	located	in	the	root	of	the	repo	served	up	at	this	URL:

	https://janedev.github.io/wats3010-hello-world	

If	you	have	created	a	gh-pages	branch,	but	are	unsure	where	it	is	hosted	you	can	click	on	the	Settings	tab	on	the
main	page	of	your	repo	and	then	scroll	down	to	find	the	link	to	the	hosted	web	pages.

Commands	to	create	gh-pages
When	you	start	working	on	a	new	repo	you	will	be	in	the	master	branch.

From	a	bash	terminal	(git	bash	on	Window	or	terminal	on	Mac)

Check	which	branch	you're	in

	git	status	

If	you	are	in	master	and	you	want	to	create	a	gh-pages	branch	on	Github	enter	the	following	commands.

First	push	all	your	work	to	master.	You	can	add	a	single	file	or	all	files.	The	dot	(.)	indicates	all	files	in	this	folder	and
below.

	git	add	<filename>		or		git	add	.	

	git	commit	-m"my	comment	message"	

	git	push	

Next	run	checkout	-b	to	create	a	new	branch	to	be	created	with	the	name	gh-pages

Create	gh-pages	branch	for	Github	hosting

15

	git	checkout	-b	gh-pages	

Next	run	push	-u	origin	to	update	Github	which	is	a	remote	location.	Specifiy	gh-pages:gh-pages	tells	github	that	the
branch	is	named	gh-pages	locally	and	remotely.	The	format	is	local:remote.

	git	push	-u	origin	gh-pages:gh-pages	

Commands	to	continue	work	on	gh-pages	branch
If	you	are	returning	to	work	on	code	in	a	repo	that	you	have	worked	on	before,	you	will	not	need	to	run	checkout	-b
because	you	don't	want	to	create	a	new	branch,	you	just	want	to	access	the	existing	branch.	Start	with	getting	status.

	git	status	

If	the	status	indicates	that	you	are	already	on	gh-pages,	you	don't	have	to	do	anything.	If	you're	on	master,	you	can
checkout	gh-pages.	Notice	we	don't	need	the	-b	when	we	are	not	creating	a	new	gh-pages	branch.

	git	checkout	gh-pages	

Create	gh-pages	branch	for	Github	hosting

16

This	is	the	answer	to	"How	to	use	the	Visual	Studio	Code	Terminal?"

Using	Integrated	Terminal
Visual	Studio	Code	allow	you	to	access	a	terminal	from	within	the	application.	You	also	have	the	ability	to	set	up
different	terminal	interfaces.	As	developers,	we	use	the	terminal	to	communicate	with	Github	and	issue	commands	to
maintain	the	repo	were	working	on.

To	open	the	integrated	terminal	from	the	menu	click	on		View	Integrated	Terminal		from	the	menu.	You	can	also	use
the	shortcut	Ctrl-Tick.	The	Tick	is	located	on	top	left	of	the	keyboard	below	the	Escape	key.

The	picture	below	shows	the	terminal	opened	at	the	bottom	and	a	command	for	git	status	has	been	issued.	This
terminal	was	opened	on	a	Windows	10	workstation	where	Powershell	it	the	default	terminal.	On	a	Mac	the	default
terminal	is	bash.

Use	the	Visual	Studio	Code	Terminal

17

Windows:	Set	'Git	Bash'	as	the	default	Integrate
Terminal
The	default	interface	for	Mac	is	the	OS	X	bash,	which	is	works	well	when	communicating	with	Github.	For	Windows
users,	it	is	useful	to	configure	your	dev	environment	to	use	Git	Bash	as	the	default	integrate	terminal	in	VS	Code.

You	will	first	access	User	Settings	on	Windows	from	the	File	Preferences	Setttings	menu.

Use	the	Visual	Studio	Code	Terminal

18

This	will	open	up	two	documents	side	by	side.	On	the	left	are	the	default	settings	and	on	the	right	are	the	User
override	settings.	To	configure	Windows	to	use	Git	Bash,	you	must	first	have	installed	Git.	Git	installation	will	have
placed	the	Git	Bash	executable	in	this	location:	C:\Program	Files\Git\bin\bash.exe.	You	will	create	an	entry	in	your
User	settings	override	to	use	this	for	the	integrated	terminal.	In	the	screen	on	the	right	type	the	following.	If	there	are
other	entries	in	the	screen	on	the	right,	they	must	be	comma	separated.	The	extra	back	slashes	(\)	you	see	are
escape	characters.	After	making	the	entry	you	should	save	and	close	the	file.	To	make	the	configuration	complete
close	and	reopen	VS	Code.

	"terminal.integrated.shell.windows":	"C:\\Program	Files\\Git\\bin\\bash.exe"	

After	your	new	configuration	is	in	your	terminal	should	look	like	the	picture	below	with	bash	as	the	terminal	interface.

Use	the	Visual	Studio	Code	Terminal

19

Use	the	Visual	Studio	Code	Terminal

20

This	is	the	answer	to	"How	to	kill	a	process	based	on	port	number?"

Kill	a	process	based	on	port	number
If	you	close	out	VS	Code	with	an	active	live-server	running,	it	may	keep	the	server	process	alive	and	you	won't	be
able	to	create	a	new	server,	just	by	opening	a	new	VS	Code	project.

If	you	find	yourself	getting	errors	when	trying	to	run	live-server,	you	may	need	to	kill	an	old	process	running	in	the
background.	The	command	to	do	this	vary	depending	on	operating	system	interface.	Note	that	live-server	run	on	port
5500	by	default.

Windows	DOS	Commands
	netstat	-ano	|	findstr	:5500	

	taskkill	/PID	<process	ID>	/F	

Windows	Powershell	Commands
	netstat	-a	-b	-n	-o	

	Stop-Process	<pid>	

You	can	also	run	resmon.exe	to	find	the	process	ID.

Mac	OS	X	Commands
	lsof	-i	:5500	

	kill	-9	<pid>	

Kill	a	process	based	on	port	number

21

This	is	the	answer	to	"How	to	validate	HTML	and	CSS?"

HTML	Validation
You	can	use	online	validation	or	a	chrome	extension.	Your	web	page	must	be	running	on	the	internet	to	use	online
validation.

Online	HTML	Validation
The	URL	for	the	online	HTML	Validation	is:	https://validator.w3.org.

1.	 Copy	your	URL	in	the	buffer	and	paste	it	into	the	w3c	validation	form.
2.	 Check	the	Source	box	as	this	will	allow	you	to	look	at	the	source	code	associated	with	any	errors.
3.	 Submit	the	form	to	see	the	errors.

HTML	Validation	with	Chrome	Extension
Go	to	the	chrome	app	store	and	Search	for	html	validator	(with	Extensions	selected)	or	go	directly	to	the	extension:
Html	Validator.

You	will	find	the	validation	issues	listed	in	Chrome	Dev	Tools	which	you	can	get	to	by	right-clicking	and	selecting
Inspect.	There	will	be	a	new	tab	named	HTML	Validator	that	will	show	problems	with	HTML.

The	gif	below	show	an	analysis	of	the	google	search	page.

Validate	HTML	and	CSS

22

https://validator.w3.org
https://chrome.google.com/webstore/detail/html-validator/mpbelhhnfhfjnaehkcnnaknldmnocglk

CSS	Validation
There	are	online	and	chrome	extension	options	for	CSS	Validation.

Online	CSS	Validation
Copy	URL	into	buffer	and	test	it	at	this	location:	https://jigsaw.w3.org/css-validator/

The	picture	below	shows	a	CSS	validation	of	the	google	search	page.

Validate	HTML	and	CSS

23

https://jigsaw.w3.org/css-validator/

CSS	Validation	with	Chrome	Extension
Go	to	the	chrome	app	store	and	Search	for	html	validator	(with	Extensions	selected)	or	go	directly	to	the	extension:
Style	Validator.

Click	on	the	extension	icon	in	Chrome	to	see	CSS	errors.

Validate	HTML	and	CSS

24

https://chrome.google.com/webstore/detail/style-validator/aaeahhnjkelemfcdmkcpaggdhfaffeod

This	answers	the	question	"How	to	setup	SSH	on	a	client	(local	machine)?"

SSH	is	the	acronym	for	"Secure	Shell".	An	SSH	connection	allows	you	to	connects	one	node(machine)	in	a	network	to
another	without	have	to	to	enter	a	password.	The	relationship	between	the	two	machines	will	follow	a	client	server
model.	The	machine	on	which	you	type	"ssh	<username>@<ip	address"	is	the	client	(aka	"local	machine")	an	the
machine	that	you	are	trying	to	connect	to	is	the	server	(aka	"host	machine").	The	server	always	maintains	the
information	about	the	username	and	password.	A	machine	may	act	as	either	client	or	server	depending	on	whether
the	user	is	logged	on	to	it	or	trying	to	connect	ot	it:	if	the	user	is	already	logged	on	to	it,	it	is	the	client.

In	order	for	a	client	to	connect	to	a	server	using	SSH,	it	must	set	up	a	public	key/private	key	pair.	The	public	key	and
private	key	provide	the	encryption	needed	for	secure	authentication	and	authorization.	An	algorithm	can	verify	that	a
give	private	key	matches	a	given	public	key.	Both	the	public	and	private	keys	are	stored	on	the	client.	Before	the	client
can	connect	to	the	server,	the	server	must	record	the	public	key	of	the	client	in	an	file	called	authorized_keys	located
in	the	.ssh	directory	under	the	home	directory	of	the	user	on	the	server	machine.	When	the	user	issues	the	SSH
command	from	the	client	machine	the	public	key	(and	proof	that	it	has	the	matching	private	key)	is	sent	to	the	server.
If	there	is	a	match	between	the	public	key	sent	to	the	server	and	one	of	the	keys	in	the	authorized_keys	file,	then	a
test	is	made	on	the	client	to	see	if	the	server	is	trusted.	During	ssh	initialization	the	host	send	the	client	a	host	key.
The	client	checks	the	host	key	against	entries	in	the	known_hosts	file.	If	the	host	key	is	not	found	a	message	pops
up	asking	the	user	to	verify	the	host.	Once	verified	the	host	key	is	added	to	the	client's	known_hosts	file.

For	example	if	I	want	to	issue	the	following	command:	ssh	bob@1.2.3.4,	the	following	setup	must	exist	on	the	the
client	and	server	machines.

You	can	think	of	authorized_keys	as	a	file	that	helps	the	server	trust	the	client	and	known_hosts	as	a	file	that	helps
the	client	trust	the	server.	The	public	key,	authorized_keys	and	known_hosts	files	are	all	text	files	and	the	contents
may	be	safely	copy	and	pasted.	It	is	also	possible	to	add	a	config	file	to	the	client	.ssh	directory	and	the	config	file

Setup	SSH

25

can	be	used	to	map	servers	to	different	public/private	key	files	if	needed.	In	general,	SSH	will	look	in	the	.ssh	directory
and	try	all	keys	if	needed	when	attempted	to	authenticate.

A	machine	may	contain	both	and	authorized_keys	file	and	a	known_hosts	file	because	it	can	be	operating	in	the
either	role	at	different	times.

Setting	up	SSH	on	a	Mac	or	Linux	Client

Check	to	see	if	key	files	already	exist	because	you	don't	want	to	replace	them	if	they	might	already	be	in	use.

	ls	-la	~/.ssh/	

Look	for		id_rsa	_	_and		id_rsa.pub	

Generate	the	key	files

	ssh-keygen	

	Check	that	the	key	files	have	been	properly	generated	

	ls	-la	~/.ssh/	

	Copy	the	public	key	to	the	buffer	

	cat	~/.ssh/id_rsa.pub	

Select	contents	of	file	from	screen	and		CTRL-c		to	put	in	buffer

Use	a	text	editor	and	paste	the	key	into	the	authorized_keys	file	on	the	server	you	wish	to	access.

Setting	up	SSH	on	a	Windows	Client

If	you	are	using	Windows	10,	you	have	3	options	for	creating	the	public/private	key	needed	for	SSH	and	running	SSH.

1.	 Use	git	bash	to	create	keys	and	run	SSH.	When	you	download	git	to	you	windows	machine,	you	will	get	the	git
bash	program	which	will	provide	a	bash	interface.	See	this	article	on	github.com:
https://help.github.com/articles/testing-your-ssh-connection/.

2.	 Use	puTTYgen	to	create	the	public	and	private	keys.	Use	puTTY	to	create	an	SSH	Session	from	a	GUI.	See	this
youtube	video	for	an	example	of	how	to	use	puTTY	to	connect	to	a	server.

3.	 Install	a	linux	shell	on	your	Windows	10	machine.	This	will	create	a	new	file	system,	so	you	need	to	keep	this	in
mind	if	you're	developing	on	the	Windows	file	system.	See	instructions	for	setting	up	the	Linux	Shell	for	Windows
in	the	WATS	Lab	FAQ.

Setup	SSH

26

https://git-scm.com/download/win
https://help.github.com/articles/testing-your-ssh-connection/
https://www.chiark.greenend.org.uk/~sgtatham/putty/latest.html
https://www.youtube.com/watch?v=O3ORQQnOgEc&t=2s

This	article	answers	the	question	"How	to	Setup	a	Linux	Shell	on	Windows	10?"

Modify	the	Windows	Features	to	add	Linux	Subsystem.	Click	on	Windows	button,	key	in	System,	and	choose
System	(Control	Panel).	Search	for	Windows	Features.	Click	on	"Turn	Windows	feature	on	or	off".

Scroll	down	and	put	a	check	mark	next	to	"Windows	Subsystem	for	Linux"	and	click	OK.	This	will	ask	you	to
restart	your	computer	and	you	should	respond	yes.

When	the	computer	is	through	rebooting,	go	to	the	Windows	Store	and	search	for	Ubuntu.	Click	the	"Get	the
app"	button	and	let	it	download	and	install.

Setup	Linux	Shell	on	Windows	10	(Ubuntu)

27

When	it's	through	installing	you	can	"Launch"	the	app.	You	will	be	prompted	to	create	a	user	name	and	password.
You	can	use	the	same	username	and	password	that	you	used	to	log	into	your	windows	computer	but	it	will	be	in	a
different	subsystem	and	will	use	a	different	home	directory.	To	access	it	you'll	have	to	launch	the	Ubuntu	app.	You'll
be	able	to	access	files	in	the	windows	subsystem	by	referencing	the	/mnt/c/	folder	to	get	to	the	root	of	the	Windows
subsystem.	When	you're	in	the	Ubuntu	shell	you	can	use	these	commands	to	help	identify	who	you	are		whoami	and
where	you	are		pwd	.	If	my	user	name	is	bob	in	both	windows	and	in	the	Ubuntu	shell,	my	Ubuntu	home	will	be
/home/bob	and	my	Windows	home	will	be	\Users\bob.	When	you're	the	Ubuntu	shell	you	can	get	to	your	linux	home
using		cd	~		and	you	get	to	your	Windows	home	using		cd	/mnt/c/Users/bob	.

How	To	Geek	Provides	a	lot	of	documentation	on	setting	up	and	working	with	a	linux	shell	on	Windows	10.	See	these
links	for	more	information:

How	to	tell	if	you	have	a	32	bit	or	64	bit	machine:	https://www.howtogeek.com/howto/21726/how-do-i-know-if-im-
running-32-bit-or-64-bit-windows-answers/

How	to	install	linux	shell	on	a	windows	10	machine:	https://www.howtogeek.com/249966/how-to-install-and-use-the-
linux-bash-shell-on-windows-10/

How	to	install	ubuntu	bash	on	a	windows	10	machine:	https://www.howtogeek.com/261449/how-to-install-linux-
software-in-windows-10s-ubuntu-bash-shell/

Using	the	linux	terminal	CLI	(command	line	interface):	https://www.howtogeek.com/140679/beginner-geek-how-to-
start-using-the-linux-terminal/

Setup	Linux	Shell	on	Windows	10	(Ubuntu)

28

https://www.howtogeek.com/howto/21726/how-do-i-know-if-im-running-32-bit-or-64-bit-windows-answers/
https://www.howtogeek.com/249966/how-to-install-and-use-the-linux-bash-shell-on-windows-10/
https://www.howtogeek.com/261449/how-to-install-linux-software-in-windows-10s-ubuntu-bash-shell/
https://www.howtogeek.com/140679/beginner-geek-how-to-start-using-the-linux-terminal/

This	FAQ	answer	the	question	"How	to	add	an	admin	user	to	Wordpress	using	mySQL?"

Add	Admin	User	to	Wordpress	using	mySQL
Sign	on	the	mySQL.	Digital	Ocean	provides	the	admin	password	to	sign	on	into	mySQL	here:
	/root/.digitalocean_password	

Copy	the	password	into	the	buffer	and	paste	after	executing	the	following	command:

	mysql	-u	root	-p	

This	will	log	you	into	mysql	and	you	should	see	the	'mysql>'	prompt.

Change	to	the	wordpress	database	by	executing	the	following	command:

	use	wordpress;	

Note	you	can	find	all	databases	with	the	following	command

	show	databases;	

and	all	tables	with	this	command

	show	tables;	

Verify	that	you	are	in	the	wordpress	database	by	executing	show	tables;	and	seeing	the	"wp_"	tables.

Then	execute	the	following	commands.	Replace	the	"<>"	with	the	data	you	want.	Note	that	once	the	password	is	in
the	database	it	will	be	one-way	encrypted	with	MD5	and	you	won't	be	able	to	see	it	in	plain	text.	Note	that	the	ID
cannot	already	exist	so	you	may	want	to	issues	the	(select	*	from	`wordpress`.`wp_users`;	

to	see	what	the	current	user	ID's	are	and	pick	the	next	one)

Use	the	same	ID	value	in	all	3	queries.	For	example	I'm	using	'4'	in	the	queries	below.

	INSERT	INTO	`wordpress`.`wp_users`	(`ID`,	`user_login`,	`user_pass`,	`user_nicename`,	`user_email`,	`user_url`,

`user_registered`,	`user_activation_key`,	`user_status`,	`display_name`)	VALUES	('4',	'demo',	MD5('demo'),	'<user

nicename>',	'test@yourdomain.com','http://www.test.com/',	'2018-04-17	00:00:00',	'',	'0',	'<user	display	name>');	

	INSERT	INTO	`wordpress`.`wp_usermeta`	(`umeta_id`,	`user_id`,	`meta_key`,	`meta_value`)	VALUES	(NULL,	'4',

'wp_capabilities',	'a:1:{s:13:"administrator";s:1:"1";}');	

	INSERT	INTO	`wordpress`.`wp_usermeta`	(`umeta_id`,	`user_id`,	`meta_key`,	`meta_value`)	VALUES	(NULL,	'4',

'wp_user_level',	'10’);	

A	Web	Reference:	http://www.wpbeginner.com/wp-tutorials/how-to-add-an-admin-user-to-the-wordpress-database-
via-mysql/

How	to	Add	an	Admin	User	to	Wordpress	using	mySQL

29

http://www.wpbeginner.com/wp-tutorials/how-to-add-an-admin-user-to-the-wordpress-database-via-mysql/

This	FAQ	answer	the	question	"How	to	add	an	admin	user	to	Wordpress	using	mySQL?"

Wordpress:	Additional	Permissions
If	you	navigate	to	<url	to	wordpress>/wp-admin	and	find	that	you	have	updates	to	process,	you	should	be	able	to	run
them	with	the	click	of	a	button.	Sometimes	these	will	fail	due	to	inadequate	permissions	granted	to	directories	and	files
that	the	update	process	needs	to	do	its	job.

You	can	view	Unix	permissions	for	each	file	and	directory	by	running	ls	-la.	The	output	will	resemble	what	is	shown
below:

Unix	assigns	Read	(r),	Write	(w),and	Execute	(x)	permissions	to	each	object	and	directory	objects	have	a	(d)	in	front
of	the	permission	string.	The	rwx	are	grouped	by	owner,	group,	other.	The	rwx	strings	can	be	replaced	by	an	Octal
value	that	represents	the	sum	of	the	permissions	applied	to	an	object.	See	this	website,	permissions-calculator,	to	see
how	changing	the	octal	value	changes	the	value	of	the	read,	write,	execute	properties.

The	chmod	command	allows	you	to	change	the	permissions	on	an	object.	If	I	want	to	enable	all	permission	on	a
object	I	could	issue	the	command		chmod	777	<filename	.	In	order	to	allow	Wordpress	to	successfully	update	I	used
	chmod	775		on	the	following	directories	and	files	under	the	Wordpress	installation.	You	should	cd	to	/var/www/html
before	you	execute	these	commands.

chmod	775	wp-content
chmod	775	wp-admin/includes
chmod	775	wp-admin
chmod	775	wp-includes
chmod	775	wp-login.php
chmod	775	wp-activate.php
chmod	775	wp-signup.php
chmod	775	wp-comments-post.php
chmod	775	wp-comments-post.php

If	you	wanted	to	"loosen"	permissions	on	everything	-	all	files	and	directories	-	under	a	given	directory	the	command
is:

	chmod	-R	775	html	

Wordpress:	Additional	Permissions

30

http://permissions-calculator.org/decode/0775/

The	-R	means	recursively	apply	the	775	to	all	files	and	directories	under	the	html	directory.	For	example,	if	you	find
you	still	can't	install	with	the	directed	chmod	command	above,	you	can	navigate	to	the	directory	above	the	server	root
and	then	set	all	files	and	directories	under	the	server	root	to	allow	the	user	to	write	with	the	following	commands:

cd	/var/www

chmod	-R	775	html

When	adding	permissions	to	any	application,	such	as	Wordpress,	you	alway	want	to	give	just	enough	but	not	to	much
access.	You	can	read	about	the	Least	Privilege	Principle	here	in	the	Hardening	Wordpress	document.

Wordpress:	Additional	Permissions

31

https://codex.wordpress.org/Hardening_WordPress

This	FAQ	answer	the	question	"How	to	get	started	with	Codenvy?"

Codenvy:	Get	Started
When	you	sign	up	for	Codenvy,	you	should	already	have	a	github.com	account	and	you	want	to	choose	your
github	account	to	Login	with.

Authorizing	OAuth2:	This	allows	Codenvy	to	clone	from	and	push	to	Github.com

Codenvy:	Get	started

32

When	you	"push"	to	get	be	sure	to	check	the	"Push	committed	changes"	checkbox

Directions	to	enter	Username	and	Email

Codenvy:	Get	started

33

Adding	Username	and	Email

Codenvy:	Get	started

34

This	FAQ	answer	the	question	"How	to	add	Lets	Encrypt	to	Apache	on	Digital	Ocean	Ubuntu	16.04?"

Let's	Encrypt:	HTTPS	on	Apache
Create	a	non	root	sudoer	user

"sammy"	is	just	an	example	of	a	user	I	have	created	on	my	server.

sudo	usermod	-aG	sudo	sammy

Look	Up	Digital	Ocean	Docs

https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-14-04

Step	1:	Execute	steps	to	download	and	update	the	Let's	Encrypt	Client

Step	2:	Execute	steps	to	set	up	the	SSL	Certificate	on	just	the	Wordpress	subdomain

I	have	installed	Wordpress	on	my	server	and	provided	the	domain	name	"wp",	so	I	will	just	install	the	certificate	on	that
subdomain.

	sudo	certbot	--apache	-d	wp.beckypeltz.online

I	chose	the	redirect	options.	This	means	if	the	user	types	http://wp.beckypeltz.online,	into	the	browser,	I'll	redirect	to
https://wp.beckypeltz.online.	See	the	image	below	of	this	choice.

Lets	Encrypt:	HTTPS	on	Apache

35

https://www.digitalocean.com/community/tutorials/how-to-secure-apache-with-let-s-encrypt-on-ubuntu-14-04
http://wp.beckypeltz.online
https://wp.beckypeltz.online

This	FAQ	answers	the	question	"How	to	add	Bootstrap	4	to	Vue.js	project?"

Bootstrap	4	and	Vue.js
This	document	describes	two	ways	to	add	Bootstrap	4	to	a	Vue.js	project.	The	first	way	is	linking	to	CDN's	in	the
index.html.	The	second	way	is	to	use	Vue-Bootstrap	which	will	load	into	the	apps	main.js	like	a	component.	If	you	use
the	CDN	method,	you	can	use	standard	bootstrap	class	names	provided	by	the	Bootstrap	documentation.

Method	1:	Linking	to	CDN's
Linking	to	CDN's	in	a	Vue.js	project	is	similar	to	linking	to	them	in	any	HTML5	document.	You'll	follow	the	directions	on
the	Bootstrap	home	page	to	add	them	to	your	index.html	in	the	root	of	the	application	code.	There	is	one	css	link	and
three	JavaScript	links.	Bootstrap	4	requires	jquery	and	popper.js.

The	code	in	your	index.html	will	look	something	like	this	after	you	retrieve	the	links	from	the	BS	4	homepage.

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8">

		<meta	name="viewport"	content="width=device-width,initial-scale=1.0">

		<title>Hikes</title>

		<!--	Latest	compiled	and	minified	CSS	-->

		<link	rel="stylesheet"	href="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/css/bootstrap.min.css"	integrity

="sha384-Gn5384xqQ1aoWXA+058RXPxPg6fy4IWvTNh0E263XmFcJlSAwiGgFAW/dAiS6JXm"

				crossorigin="anonymous">

		<link	rel="icon"	type="image/png"	href="static/images/backpacker.png">

		<link	href="https://fonts.googleapis.com/css?family=Ubuntu"	rel="stylesheet">

		<link	rel="stylesheet"	href="https://use.fontawesome.com/releases/v5.2.0/css/all.css"	integrity="sha384-hWVjf

lwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ"	crossorigin="anonymous">

</head>

<body>

		<div	id="app"></div>

		<script	src="https://code.jquery.com/jquery-3.2.1.slim.min.js"	integrity="sha384-KJ3o2DKtIkvYIK3UENzmM7KCkRr/

rE9/Qpg6aAZGJwFDMVNA/GpGFF93hXpG5KkN"

Using	Bootstrap	with	Vue.js

36

https://getbootstrap.com/docs/4.0/getting-started/introduction/

				crossorigin="anonymous"></script>

		<script	src="https://cdnjs.cloudflare.com/ajax/libs/popper.js/1.12.9/umd/popper.min.js"	integrity="sha384-ApN

bgh9B+Y1QKtv3Rn7W3mgPxhU9K/ScQsAP7hUibX39j7fakFPskvXusvfa0b4Q"

				crossorigin="anonymous"></script>

		<script	src="https://maxcdn.bootstrapcdn.com/bootstrap/4.0.0/js/bootstrap.min.js"	integrity="sha384-JZR6Spejh

4U02d8jOt6vLEHfe/JQGiRRSQQxSfFWpi1MquVdAyjUar5+76PVCmYl"

				crossorigin="anonymous"></script>

</body>

</html>

There	is	a	sample	project	deployed	on	github	that	uses	the	CDN	approach.

Method	2:	Using	Vue-Bootstrap
To	use	vue-bootstrap,	you	start	by	installing	it	from	npm.	The	Vue-Bootstrap	documentation	provides	these	install
instructions.	You'll	enter	this	npm	command	into	your	terminal.	Use	the	save	option	to	record	the	package	in	your
package.json	file,	so	that	future	users	of	your	code	will	pick	it	up	when	they		npm	install	.

npm	i	bootstrap-vue	--save

You'll	notice	that	the	bootstrap-vue	install	added	both	bootstrap	and	bootstrap-vue	to	your	node-modules	directory.

In	your	main.js	file,	add	the	following	code	to	register	the	functionality	provided	by	bootstrap	as	a	Vue	Component	and
make	the	CSS	available.

import	Vue	from	'vue'

import	BootstrapVue	from	'bootstrap-vue'

import	'bootstrap/dist/css/bootstrap.css'

import	'bootstrap-vue/dist/bootstrap-vue.css'

Vue.use(BootstrapVue);

Here's	the	code	in	a	sample	application	using	Bootstrap	Vue.Notice	that	there	is	no	reference	to	Bootstrap	or	jquery	in
the	index.html.

index.html

<!DOCTYPE	html>

<html>

<head>

		<meta	charset="utf-8">

		<meta	name="viewport"	content="width=device-width,initial-scale=1.0">

		<title>Hikes</title>

		<link	href="https://fonts.googleapis.com/css?family=Ubuntu"	rel="stylesheet">

		<link	rel="stylesheet"	href="https://use.fontawesome.com/releases/v5.2.0/css/all.css"	integrity="sha384-hWVjf

lwFxL6sNzntih27bfxkr27PmbbK/iSvJ+a4+0owXq79v+lsFkW54bOGbiDQ"	crossorigin="anonymous">

</head>

<body>

		<div	id="app"></div>

</body>

</html>

main.js

//	The	Vue	build	version	to	load	with	the	`import`	command

//	(runtime-only	or	standalone)	has	been	set	in	webpack.base.conf	with	an	alias.

Using	Bootstrap	with	Vue.js

37

https://github.com/rebeccapeltz/hikes
https://bootstrap-vue.js.org/docs/
https://github.com/rebeccapeltz/hikes/tree/npm-bs4

import	Vue	from	'vue'

import	App	from	'./App'

import	router	from	'./router'

import	BootstrapVue	from	'bootstrap-vue'

import	'bootstrap/dist/css/bootstrap.css'

import	'bootstrap-vue/dist/bootstrap-vue.css'

Vue.use(BootstrapVue);

Vue.config.productionTip	=	false

/*	eslint-disable	no-new	*/

new	Vue({

		el:	'#app',

		router,

		components:	{	App	},

		template:	'<App/>'

})

Network	Downloads:	What	to	Expect	from	each	Method

The	picture	below	shows	the	network	downloads	for	the	1st	method	using	CDNs.	Note	that	the	bootstrap	files	can	be
seen	as	downloads.

In	the	picture	below	where	Vue-Bootstrap	is	used	on	a	branch	from	the	code	above,	you	won't	see	the	bootstrap	files
in	the	network	display.

Using	Bootstrap	with	Vue.js

38

Using	Bootstrap	with	Vue.js

39

This	FAQ	answers	the	question	"How	to	use	the	Git	Command	Line?"

Git	Command	Line
This	is	not	an	all	inclusive	document	on	how	to	use	the	Git	Command	Line.	This	a	quick	reference	on	the	command	to
clone	a	repo	from	Github.com	and	then	push	changes	back	to	Github.com.

I'm	am	using	a	repo,	wats3010-hello-world	from	my	account,	rebeccapeltz,	on	Github.com	to	demonstrate	these
commands.

Copy	the	ssh	git	address	of	your	repo	into	your	clipboard
The	picture	below	shows	that	I	have	clicked	on	the	green	button	(see	green	arrow	in	picture)	labeled	Clone	or
Download.	I	have	also	clicked	on	the	link	labeled	"Use	SSH"	(see	blue	arrow	in	the	picture).	I	see	an	address
git@github.com:rebeccapeltz/wats3010-	and	I	have	clicked	on	the	copy	icon	to	copy	this	address	into	my
clipboard	(see	yellow	arrow	in	the	picture).

Clone	command
You	can	open	a	command	line	window	in	visual	studio	code	or	using	terminal	(Mac)	or	git	bash	(Windows	with	Git
installed).	From	the	command	line	you	can	navigate	to	your	projects	directory	(a	directory	you	have	created	under
your	home	directory)	and	then	issue	the	clone	command	by	typing	clone	and	then	pasting	the	git	address	onto	the
command	line.

cd	~/projects

git	clone	git@github.com:rebeccapeltz/wats3010-hello-world.git

You	will	see	output	showing	that	the	code	from	github.com	is	being	copied	down	to	your	local	machine.

Push	Changes	back	to	Github

Git	Command	Line

40

https://www.github.com

After	you	have	made	changes	to	your	code	and	tested	to	see	that	they	are	working	as	you	expect,	you	will	issue	the
following	commands	in	the	root	of	your	project	to	push	the	changes	back	to	github.	Lines	with	a	#	at	the	start	are
comments.	You	only	execute	the	command	that	start	with	git	below.

#	optional	check	to	see	the	file	you	have	changed	they	will	appear	in	red

git	status

#	add	the	file	to	the	local	git	repo	-	you	can	name	each	file	or	use	.	to	specify	all	files	below	current

#	directory

git	add	.

#	if	you	issue	git	status	now	the	files	added	will	be	green

#	commit	the	files	to	the	directory	and	provide	a	message	describing	the	changes

git	commit	-m"my	changes	for	this	commit"

#	if	you	issue	git	status	now	you'll	see	a	notice	that	you	have	files	to	push

#	push	the	files	to	github.com	repo

git	push	origin	master

You	might	want	to	commit	to	memory

git	add	.

git	commit	-m"my	changes"

git	push	origin	master

Default	Editor	for	Git
If	you	forget	to	enter	a	message	for	your	commit,	you'll	find	that	an	editor	will	open.	This	default	editor	is	VIM	which
may	be	unfamiliar	to	you.	For	that	reason,	it	a	good	idea	to	configure	an	editor	you're	familiar	with,	which	would	be
Visual	Studio	Code.	You	only	need	to	do	this	once.

To	configure	Visual	studio	code,	make	sure	that	you	have	this	program	in	your	path.	You	can	test	this.

code	--help

which	should	show	you	help	output.	If	it's	not	in	the	path	you	can	add	it	to	the	path

Mac	Install	Code	in	Path

In	VS	Code	enter	CTRL-SHIFT-P	to	open	the	Command	Pallete	and	type	in	Shell	Command:	Install	'Code'
Command	in	command	path

Windows	Install	Code	in	Path

You	can	check	a	box	during	installation	to	add	Code	to	Windows	path.	If	you	didn't	do	this	you	can	rerun	the
installation.

Git	Command	Line

41

Set	VS	Code	as	the	default	editor	for	Git

Once	you've	verified	that	VS	code	is	in	the	path,	you	can	execute	the	following	command	to	make	it	the	default	editor
for	Git.

git	config	--global	core.editor	"code	--wait"

You	can	test	that	VS	Code	is	your	default	editor	for	git	by	typing	the	following	command.	This	will	open	your	machine's
~/.gitconfig	file	in	VS	Code.	This	is	a	hidden	file	under	your	user	root	that	contains	all	the	git	configuration	settings.

git	config	--global	-e

Git	Command	Line

42

This	FAQ	answers	the	question	"How	to	create	a	Digital	Ocean	droplet	and	provide	SSH	connection	to	Github?"

Overall	Process
Providing	an	SSH	Connection	to	Github	can	be	done	either	before	or	after	creating	the	Digital	Ocean	(DO)	droplet.	It
turns	out	that	it's	easier	to	set	up	an	SSH	key	in	DO	before	creating	the	droplet	than	to	manually	add	the	SSH	key	to
the	DO	droplet	after	creating	it.	For	that	reason,	I'll	describe	setting	up	the	SSH	Connection	before	describing	setting
up	the	droplet.

Provide	SSH	Connection	to	Github
Setup	SSH	Keys	for	the	Account

Because	the	application	that	runs	to	setup	a	droplet	prompts	the	user	for	an	existing	SSH	key	(or	keys),	it	makes
sense	to	set	these	keys	up	before	attempting	to	create	the	droplet.

1.	 Start	by	creating	SSH	Keys	on	you	local	machine	(See	the	FAQ	on	Install	Git	Locally)
2.	 Copy	the	public	SSH	Key	into	your	buffer		cat	~/.ssh/id_rsa.pub		and	select	and	copy.
3.	 Open	Digital	Ocean	in	your	browser	and	navigate	to	Account	|	Security.	Then	use	the	Add	SSH	Key	form	to	add

the	public	key	to	Digital	Ocean.

The	net	effect	of	having	an	SSH	Key	uploaded	to	you	DO	account	is	that	you	will	see	it	offered	up	when	you	are
creating	your	droplet.

Upload	SSH	Keys	to	Digital	Ocean	Account

How	to	Add	SSH	Keys

How	to	Add	an	SSH	Key	Manually	to	an	Existing	Droplet

If	you	already	have	a	droplet	and	you	want	to	add	an	SSH	key,	you	will	need	to	do	it	manually.

1.	 On	you	local	machine	copy	the	key	into	the	buffer		cat	~/.ssh/id_rsa.pub		and	select	and	copy.
2.	 Launch	the	console	from	Digital	Ocean	dashboard	and	login	using	your	DO	login	credentials.
3.	 Use		ls	-la	~/.ssh/authorized_keys	to	determine	of	the	authorized	keys	files	exists.	If	it	doesn't	create	it	with

	touch	~/.ssh/authorized_keys	

4.	 Use	nano	to	edit	the	authorized_keys	file	(nano	has	copy/paste)	and	paste	the	SSH	key	from	your	local	machine
into	the	authorized	keys	file	and	save.

5.	 Set	permissions	on	the		authorized_keys		file	to	make	it	accessible

chmod	-R	go=	~/.ssh

chown	-R	$USER:$USER	~/.ssh

Create	a	Droplet	on	Digital	Ocean

43

https://www.digitalocean.com/docs/droplets/how-to/add-ssh-keys/to-account
https://www.digitalocean.com/docs/droplets/how-to/add-ssh-keys

[Upload	keys	on	an	existing	droplet](https://www.digitalocean.com/docs/droplets/how-to/add-ssh-keys/to-existing-
droplet

Create	a	Digital	Ocean	Droplet
Follow	the	step	for	creating	a	droplet	in	the	link	below.	Choose	an	Ubuntu	images/1	GB	memory/25	GB	disk/San
Francisco	for	your	data	center	as	it's	the	closest	to	Seattle.	You	want	the	simplest	images	for	your	server	as	possible
and	it	should	only	cost	$5/month.	You	don't	need	a	back	up	or	block	storage.	If	you	uploaded	an	SSH	key	you	should
see	it	available	when	under	"Add	SSH	key"	and	you	should	select	it.	Then	just	click	on	create.	If	you	make	a	mistake
just	delete	the	image	from	the	console	and	try	it	again.	Don't	get	attached	to	your	server,	especially	when	there's
nothing	on	it.	Make	note	of	the	IP	Address.

Once	the	image	it	created,	go	to	your	local	machine	and	login	using	ssh.	Here's	an	example	if	your	IP	address	is
	203.0.113.0	

	ssh	root@203.0.113.0	

If	your	using	a	Mac	you	can	do	this	from	the	terminal	and	if	you're	using	Windows,	I	recommend	doing	it	from	Git
Bash.

Create	droplet

Connect	with	SSH

Create	a	Droplet	on	Digital	Ocean

44

https://www.digitalocean.com/docs/droplets/how-to/add-ssh-keys/to-existing-droplet
https://www.digitalocean.com/docs/droplets/how-to/create/
https://www.digitalocean.com/docs/droplets/how-to/connect-with-ssh/

Create	a	Droplet	on	Digital	Ocean

45

This	FAQ	answers	the	question	"How	to	migrate	Vue	2	code	from	Vue	CLI	2	to	Vue	CLI	3?"

Migrate	Vue	2	Code	From	Vue	CLI	2	to	Vue	CLI	3
Vue.js	has	rearchitected	the	way	that	you	build	the	Vue.js	2	code.	It's	important	to	discern	the	difference	between	the
way	that	you	code	Vue.js	and	the	way	that	you	build	Vue.js.	Vue.js	released	an	new	version	of	the	CLI	(the	command
line	interface	for	building	Vue.js	code	in	to	Vanilla	JavaScript	and	CSS)	in	2017.	The	versioning	moved	from	2	to	3.

It	is	not	necessary	to	upgrade	the	Vue.js	2	code,	but	if	you	want	to	continue	to	develop	in	Vue.js	you	should	upgrade
the	CLI	to	version	3.	There	are	a	number	of	important	architecture	changes	to	the	way	that	a	project	is	configured	and
architected	in	CLI	3.	It	is	not	necessary	to	modify	your	code	to	make	this	move.	The	changes	required	involved
moving	new	configuration	files	and	changes	to	the	file	structure	(where	your	code	is	stored).

This	document	outlines	a	process	to	migrate	your	code	repo	and	add	new	config	files	so	that	it	can	take	advantage	of
the	CLI	3.

Upgrade	Node
The	first	step	should	be	to	make	sure	you're	using	the	latest	version	of	node	and	npm.	This	can	be	done	by	executing
the	global	install	command.	This	command	will	update	node	and	npm.

	npm	install	-g	node	

If	you're	on	a	Mac,	depending	on	how	you	installed	node,	you	made	need	to	use	the		sudo		command	for	permission
to	do	this	upgrade.

	sudo	npm	install	-g	node	

Its	always	a	good	idea	to	check	your	upgrade	by	checking	versions.

npm	--version

node	--version

Upgrade	Vue	CLI
To	upgrade	Vue	CLI	you	can	follow	instructions	on	this	page:	https://cli.vuejs.org/guide/installation.html

If	you	have	Vue	2	CLI	installed	you	need	to	uninstall	it.

npm	uninstall	vue-cli	-g

The	command	to	install	CLI	3	is

npm	install	-g	@vue/cli

Then	verify	the	version

vue	--version

As	of	this	writing,	the	current	version	is	3.3.0,	but	there	is	a	lot	of	development	taking	place	with	Vue.js	and	this	may
not	be	the	version	that	you	get.	Your	major	version	(the	first	number	should	at	least	be	a	3).

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

46

https://cli.vuejs.org/guide/installation.html

Build	and	Dev
CLI	3	provides	a	production	and	dev	build	just	as	CLI	2	did	but	the	command	to	run	the	dev	build	and	server	has
changed.	To	run	the	dev	build	use	the	following	command:

npm	run	serve

To	run	the	production	build,	which	should	create	runnable	html/css/js	in	the	docs	directory:

npm	run	build

Migrate	Code

Branch	Existing	Code

Do	the	migrate	on	a	branch	and	then	when	it's	working	properly,	merge	to	the	Master	branch.	For	example	(below),
create	a	branch	named	cli3	and	check	it	out	to	your	local	machine	to	work	on.

git	checkout	-b	cli3

The	new	file	structure	that	CLI	3	is	looking	for	is	shown	in	the	picture	below.	Your	goal	will	be	to	migrate	your	file
structure	to	this	new	structure.	Notice	that	the	config	and	build	directories	are	gone.	The	node_modules	is	listed	in
.gitignore	so	it	the	name	appears	faded	out	in	VS	Code.	There	are	some	new	.js	files	used	for	configuration.

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

47

The	changes	to	look	for	in	this	picture	are:

the	router	code	is	in	a	router.js	file	in	the	root	instead	of	router/index.js
there	is	a	new		views		directory	-	in	CLI	3	the	best	practice	is	to	put	components	referenced	in	the	router	into	the
views	directory	and	use	the		components		directory	for	non-view	components
there	is	a		.gitkeep		file	in	the		components		directory	and	the		views		directory
there	some	new	config	files	-	this	document	will	provide	the	contents	for	these	files,	in	particular
	.babel.config.js	,		postcssrc.js	
there	a	couple	of	config	files	that	I	created	specifically	to	make	migration	easier	to	put	production	build	code	in	the
	docs		directory	that	you'll	add		aliases.config.js		and		vue.config.js	
the		package.json		library	dependencies	has	changed	significantly	and	you'll	want	to	replace	the	entire	content	of
	package.json		with	code	provided	in	this	document
the		static		folder	has	been	renamed	to		public		and	the	index.html	has	moved	into	the		public		folder

NOTE:	It's	possible	that	the	config	code	provided	in	this	document	may	change.	You	can	always	generate	the	lates
config	code	by	running	the	new	project		create		command	to	create	a	new	project	that	will	have	all	of	the	latest	config
code.	The	project	create	command	will	not	create	the	vue.config.js	or	the	aliases.config.js	as	those	are	user	created

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

48

and	I	created	them	to	allow	for	the	use	of	the		@		symbol	to	specify		src		and	to	make	the	build	create	distributable
files	in	the		docs		folder	so	that	we	can	host	on		github.io	.

To	create	a	new	project	in	Vue	CLI	3	you	can	run	the	command	below	which	will	create	a	project	called		hello-world	.
Notice	that	the	keyword	has	changed	froom		init		to		create	.	You	should	also	pick	the	default	babel/eslint.

vue	create	hello-world

See	this	page	for	instructions	on	creating	a	new	project	and	note	special	instructions	for	Windows	users	that	are	using
the		git	bash		terminal:	https://cli.vuejs.org/guide/creating-a-project.html#vue-create.

The	purposed	of	these	migration	instructions	is	that	you	shouldn't	have	to	create	a	new	project	-	you	should	be	able	to
migrate	the	code	by	just	adding	config	files	and	modifying	the	file	structure.

Migration	Steps
delete		config		and		build		directories

delete		babel.rc	

rename		static		to		public	

move		index.html		(and	any	other	static	contents)	into		public	

create	an		aliases.config.js		file	and	load	it	with	the	contents	specified	in	this	document

create	an		babel.config.js		file	and	load	it	with	the	contents	specified	in	this	document

create	an		vue.config.js		file	and	load	it	with	the	contents	specified	in	this	document

delete		docs		directory	as	it	will	be	recreated	when	you	run	the	build

delete		package-lock.json		file	-	this	file	will	get	automatically	recreated	when	you	run		npm	install	

replace	the	contents	of		package.json		with	the	code	contents	specified	in	this	document

create	a		router.js		file	in	the		src		of	the	project	and	move	the	contents	of	router/index.js	into	this	file

create	a		views		directory	and	move	any	files	in	the		components		directory	that	are	reference	in	the	router.js	into	the
	views		directory

add	an	empty	.gitkeep	file	to	the		views		and		components		directory	(this	is	to	keep	them	around	even	if	empty)

update	links	in		router.js		to	point	to	files	in	the		views		directory

delete		node_module		and		npm	install		to	get	new	ones

test	code	build	by	running		npm	run	serve	

build	production	code	into	docs	by	running		npm	run	build	

push	branch	to	github		git	push	-set	-upstream	origin	<branch	name>	

you	should	see	your	branch	and	master	when	you	run		git	branch	

merge	to	master	by	checking	out	master	locally	and	running	merge

git	checkout	master

git	merge	<branch	name>

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

49

https://cli.vuejs.org/guide/creating-a-project.html#vue-create

add/commit/push	migrated	code	to	github	and	test	on	github.io

Once	you're	done	merging	you	can	delete	the	branch.	It's	good	practice	for	cleanup.	You'll	delete	it	locally	and
remotely.

Local:		git	branch	-d	<branch	name>	

Remote:		git	push	origin	--delete	<branch-name>	

Contents	of	Config	Files

babel.config.js

module.exports	=	{

		presets:	[

				'@vue/app'

]

}

postcssrc.js

module.exports	=	{

		"plugins":	{

				"postcss-import":	{},

				"postcss-url":	{},

				//	to	edit	target	browsers:	use	"browserslist"	field	in	package.json

				"autoprefixer":	{}

		}

}

aliases.config.js

const	path	=	require('path')

function	resolveSrc(_path)	{

		return	path.join(__dirname,	_path)

}

const	aliases	=	{

		'@':	'src',

		'@src':	'src'

}

module.exports	=	{

		webpack:	{},

		jest:	{}

}

for	(const	alias	in	aliases)	{

		module.exports.webpack[alias]	=	resolveSrc(aliases[alias])

		module.exports.jest['^'	+	alias	+	'/(.*)$']	=

				'<rootDir>/'	+	aliases[alias]	+	'/$1'

}

vue.config.js

const	path	=	require('path');

module.exports	=	{

				configureWebpack:	{

								resolve:	{

												//allow	for	@	or	@src	alias	for	src

												alias:	require('./aliases.config').webpack

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

50

								}

				},

				chainWebpack:	config	=>	{

								//turn	off	elint	for	webpack	transpile

								config.module.rules.delete('eslint');

				},

				runtimeCompiler:	true,

				css:	{

								sourceMap:	true

				},

				publicPath:	'',

				//build	for	docs	folder	to	enable	gh-pages	hosting

				outputDir:	'./docs/',

				assetsDir:	'assets'

}

package.json

{

		"name":	"hello-world",

		"version":	"0.1.0",

		"private":	true,

		"scripts":	{

				"serve":	"vue-cli-service	serve",

				"build":	"vue-cli-service	build",

				"lint":	"vue-cli-service	lint"

		},

		"dependencies":	{

				"axios":	"^0.18.0",

				"vue":	"^2.5.21",

				"vue-router":	"^3.0.2",

				"vue2-animate":	"^2.1.0"

		},

		"devDependencies":	{

				"@vue/cli-plugin-babel":	"^3.3.0",

				"@vue/cli-plugin-eslint":	"^3.3.0",

				"@vue/cli-service":	"^3.3.0",

				"babel-eslint":	"^10.0.1",

				"eslint":	"^5.8.0",

				"eslint-plugin-vue":	"^5.0.0",

				"vue-template-compiler":	"^2.5.21"

		},

		"eslintConfig":	{

				"root":	true,

				"env":	{

						"node":	true

				},

				"extends":	[

						"plugin:vue/essential",

						"eslint:recommended"

],

				"rules":	{},

				"parserOptions":	{

						"parser":	"babel-eslint"

				}

		},

		"postcss":	{

				"plugins":	{

						"autoprefixer":	{}

				}

		},

		"browserslist":	[

				">	1%",

				"last	2	versions",

				"not	ie	<=	8"

]

}

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

51

Migrate	Vue	2	Code	from	Vue	CLI	2	to	Vue	CLI	3

52

	How To ...
	Install Git Locally
	Setup Dev environment with Visual Studio Code
	Create new Github repo from existing local file folder
	Create gh-pages branch for Github hosting
	Use the Visual Studio Code Terminal
	Kill a process based on port number
	Validate HTML and CSS
	Setup SSH
	Setup Linux Shell on Windows 10 (Ubuntu)
	How to Add an Admin User to Wordpress using mySQL
	Wordpress: Additional Permissions
	Codenvy: Get started
	Lets Encrypt: HTTPS on Apache
	Using Bootstrap with Vue.js
	Git Command Line
	Create a Droplet on Digital Ocean
	Migrate Vue 2 Code from Vue CLI 2 to Vue CLI 3

